Overcoming humidity-induced swelling of graphene oxide-based hydrogen membranes using charge-compensating

  • 1.

    Sartbaeva, A., Kuznetsov, V. L., Wells, S. A. & Edwards, P. P. Hydrogen nexus in a sustainable energy future. Energy Environ. Sci. 1, 79–85 (2008).

    Google Scholar 

  • 2.

    Noussan, M., Raimondi, P. P., Scita, R. & Hafner, M. The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability 13, 298 (2020).

    Google Scholar 

  • 3.

    Abas, N., Kalair, E., Kalair, A., ul Hasan, Q. & Khan, N. Nature inspired artificial photosynthesis technologies for hydrogen production: barriers and challenges. Int. J. Hydrog. Energy 45, 20787–20799 (2020).

    Google Scholar 

  • 4.

    Voldsund, M., Jordal, K. & Anantharaman, R. Hydrogen production with CO2 capture. Int. J. Hydrog. Energy 41, 4969–4992 (2016).

    Google Scholar 

  • 5.

    Japip, S., Liao, K. & Chung, T. Molecularly tuned free volume of vapor cross‐linked 6FDA‐Durene/ZIF‐71 MMMs for H2/CO2 separation at 150 °C. Adv. Mater. 29, 1603833 (2017).

    Google Scholar 

  • 6.

    Merkel, T. C., Zhou, M. & Baker, R. W. Carbon dioxide capture with membranes at an IGCC power plant. J. Memb. Sci. 389, 441–450 (2012).

    Google Scholar 

  • 7.

    Wassie, S. A. et al. Hydrogen production with integrated CO2 capture in a membrane assisted gas switching reforming reactor: proof-of-concept. Int. J. Hydrog. Energy 43, 6177–6190 (2018).

    Google Scholar 

  • 8.

    Zhang, M. et al. Electropolymerization of molecular‐sieving polythiophene membranes for H2 separation. Angew. Chem. 131, 8860–8864 (2019).

    Google Scholar 

  • 9.

    Ghalei, B. et al. Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. J. Mater. Chem. A. 5, 4686–4694 (2017).

    Google Scholar 

  • 10.

    Ockwig, N. W. & Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007).

    Google Scholar 

  • 11.

    Yu, M., Funke, H. H., Noble, R. D. & Falconer, J. L. H2 separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 133, 1748–1750 (2011).

    Google Scholar 

  • 12.

    Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Google Scholar 

  • 13.

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    Google Scholar 

  • 14.

    Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

    Google Scholar 

  • 15.

    Kim, H. W. et al. High-performance CO2-philic graphene oxide membranes under wet-conditions. Chem. Commun. 50, 13563–13566 (2014).

    Google Scholar 

  • 16.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Google Scholar 

  • 17.

    Yang, J. et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, 1705775 (2018).

    Google Scholar 

  • 18.

    Hung, W.-S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    Google Scholar 

  • 19.

    Zhang, M. et al. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem. Int. Ed. 59, 1689–1695 (2020).

    Google Scholar 

  • 20.

    Ginés, L. et al. Positive zeta potential of nanodiamonds. Nanoscale 9, 12549–12555 (2017).

    Google Scholar 

  • 21.

    Hu, K. et al. Written‐in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping. Angew. Chem. Int. Ed. 52, 13784–13788 (2013).

    Google Scholar 

  • 22.

    Zhang, M., Huang, L., Chen, J., Li, C. & Shi, G. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 26, 7588–7592 (2014).

    Google Scholar 

  • 23.

    Huang, H. et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013).

    Google Scholar 

  • 24.

    Wu, X. et al. Elucidating ultrafast molecular permeation through well‐defined 2D nanochannels of lamellar. Membr. Angew. Chem. 131, 18695–18700 (2019).

    Google Scholar 

  • 25.

    Saini, P., Sharma, R. & Chadha, N. Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy. Indian J. Pure Appl. Phys. 55, 625–629 (2017).

    Google Scholar 

  • 26.

    Karahan, H. E. et al. MXene materials for designing advanced separation membranes. Adv. Mater. 1906697 https://doi.org/10.1002/adma.201906697 (2020).

  • 27.

    Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Google Scholar 

  • 28.

    Nie, L. et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Sci. Adv. 6, eaaz9184 (2020).

    Google Scholar 

  • 29.

    Zeynali, R., Ghasemzadeh, K., Iulianelli, A. & Basile, A. Experimental evaluation of graphene oxide/TiO2-alumina nanocomposite membranes performance for hydrogen separation. Int. J. Hydrog. Energy 45, 7479–7487 (2020).

    Google Scholar 

  • 30.

    Li, Y., Liu, H., Wang, H., Qiu, J. & Zhang, X. GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation. Chem. Sci. 9, 4132–4141 (2018).

    Google Scholar 

  • 31.

    Li, W. et al. Hydrothermally reduced graphene oxide interfaces for synthesizing high‐performance metal–organic framework hollow fiber membranes. Adv. Mater. Interfaces 5, 1800032 (2018).

    Google Scholar 

  • 32.

    Mulder, M. Basic Principles of Membrane Technology (Springer Science & Business Media, 2012).

  • 33.

    Fan, H. et al. Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    Google Scholar 

  • 34.

    Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Google Scholar 

  • 35.

    Huang, L., Li, Y., Zhou, Q., Yuan, W. & Shi, G. Graphene oxide membranes with tunable semipermeability in organic solvents. Adv. Mater. 27, 3797–3802 (2015).

    Google Scholar 

  • 36.

    Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

  • 37.

    Liu, H., Wang, H. & Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015).

    Google Scholar 

  • 38.

    Georgakilas, V. et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016).

    Google Scholar 

  • 39.

    Chuah, C. Y., Lee, J. & Bae, T.-H. Graphene-based membranes for H2 separation: recent progress and future perspective. Membr. 10, 336 (2020).

    Google Scholar 

  • 40.

    Luo, Z. P. & Koo, J. H. Quantifying the dispersion of mixture microstructures. J. Microsc. 225, 118–125 (2007).

    MathSciNet  Google Scholar 

  • 41.

    Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).

    MATH  Google Scholar 

  • 42.

    Sen, S. K. et al. Influence of total absorbed dose of Co-60 γ-radiation on the properties of h-MoO3 thin films. Thin Solid Films 693, 137700 (2020).

    Google Scholar 

  • 43.

    Ma, S. et al. Surfactant-modified graphene oxide membranes with tunable structure for gas separation. Carbon 152, 144–150 (2019).

    Google Scholar 

  • 44.

    Meng, X. et al. Improving hydrogen permeation and interface property of ceramic-supported graphene oxide membrane via embedding of silicalite-1 zeolite into Al2O3 hollow fiber. Sep. Purif. Technol. 227, 115712 (2019).

    Google Scholar 

  • 45.

    Ibrahim, A. & Lin, Y. S. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. J. Memb. Sci. 550, 238–245 (2018).

    Google Scholar 

  • 46.

    Chi, C. et al. Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 28, 2921–2927 (2016).

    Google Scholar 

  • 47.

    Zeynali, R., Ghasemzadeh, K., Sarand, A. B., Kheiri, F. & Basile, A. Performance evaluation of graphene oxide (GO) nanocomposite membrane for hydrogen separation: effect of dip coating sol concentration. Sep. Purif. Technol. 200, 169–176 (2018).

    Google Scholar 

  • 48.

    Wang, X. et al. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chem. Commun. 52, 8087–8090 (2016).

    Google Scholar 

  • 49.

    Ostwal, M., Shinde, D. B., Wang, X., Gadwal, I. & Lai, Z. Graphene oxide–molybdenum disulfide hybrid membranes for hydrogen separation. J. Memb. Sci. 550, 145–154 (2018).

    Google Scholar 

  • 50.

    Kang, Z. et al. In situ generation of intercalated membranes for efficient gas separation. Commun. Chem. 1, 3 (2018).

    Google Scholar 

  • 51.

    Nagano, T., Sato, K. & Kawahara, K. Gas permeation property of silicon carbide membranes synthesized by counter-diffusion chemical vapor deposition. Membr. 10, 11 (2020).

    Google Scholar 

  • 52.

    Hong, M., Falconer, J. L. & Noble, R. D. Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Ind. Eng. Chem. Res. 44, 4035–4041 (2005).

    Google Scholar 

  • 53.

    Wang, H. & Lin, Y. S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J. Memb. Sci. 396, 128–137 (2012).

    Google Scholar 

  • 54.

    Nian, P. et al. ZnO nanorod-induced heteroepitaxial growth of SOD type Co-based zeolitic imidazolate framework membranes for H2 separation. Mater. Interfaces 10, 4151–4160 (2018).

    Google Scholar 

  • 55.

    De Vos, R. M. & Verweij, H. High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710–1711 (1998).

    Google Scholar 

  • 56.

    Boffa, V., Blank, D. H. A. & ten Elshof, J. E. Hydrothermal stability of microporous silica and niobia–silica membranes. J. Memb. Sci. 319, 256–263 (2008).

    Google Scholar 

  • 57.

    Li, W. et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 7, 11315 (2016).

  • 58.

    Sun, Y., Song, C., Guo, X. & Liu, Y. Concurrent manipulation of out-of-plane and regional in-plane orientations of NH2-UiO-66 membranes with significantly reduced anisotropic grain boundary and superior H2/CO2 separation performance. ACS Appl. Mater. Interfaces 12, 4494–4500 (2019).

    Google Scholar 

  • 59.

    Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017).

  • 60.

    Nian, P., Liu, H. & Zhang, X. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. J. Memb. Sci. 573, 200–209 (2019).

    Google Scholar 

  • 61.

    Kang, Z. et al. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy Environ. Sci. 7, 4053–4060 (2014).

    Google Scholar 

  • 62.

    Li, Y. et al. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 11, 1850–1860 (2018).

    Google Scholar 

  • 63.

    Huang, Y. et al. Ionic liquid functionalized multi-walled carbon nanotubes/zeolitic imidazolate framework hybrid membranes for efficient H2/CO2 separation. Chem. Commun. 51, 17281–17284 (2015).

    Google Scholar 

  • 64.

    Li, Z. et al. A robust zeolitic imidazolate framework membrane with high H2/CO2 separation performance under hydrothermal conditions. ACS Appl. Mater. Interfaces 11, 15748–15755 (2019).

    Google Scholar 

  • 65.

    Peng, Y., Li, Y., Ban, Y. & Yang, W. Two‐dimensional metal–organic framework nanosheets for membrane‐based gas separation. Angew. Chem. 129, 9889–9893 (2017).

    Google Scholar 

  • 66.

    Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Google Scholar 

  • 67.

    Wang, S. et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 9, 1863–1890 (2016).

    Google Scholar 

  • 68.

    Hu, L., Pal, S., Nguyen, H., Bui, V. & Lin, H. Molecularly engineering polymeric membranes for H2/CO2 separation at 100–300 °C. J. Polym. Sci. 58, 2467–2481 (2020).

    Google Scholar 

  • 69.

    Singh, R. P., Dahe, G. J., Dudeck, K. W., Welch, C. F. & Berchtold, K. A. High temperature polybenzimidazole hollow fiber membranes for hydrogen separation and carbon dioxide capture from synthesis gas. Energy Procedia 63, 153–159 (2014).

    Google Scholar 

  • 70.

    Ozawa, M. et al. Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007).

    Google Scholar 

  • 71.

    Korepanov, V. I. et al. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121, 322–329 (2017).

    Google Scholar 

  • 72.

    Sharma, P. et al. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes. Sci. Rep. 2, 877 (2012).

    Google Scholar 

  • 73.

    Ran, J. et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes. J. Mater. Chem. A. 7, 8085–8091 (2019).

    Google Scholar 

Source

Leave a Reply

  • Sign Up
Or Login Using
Lost your password? Please enter your username or email address. You will receive a link to create a new password via email.