Biochar in climate change mitigation

  • 1.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Google Scholar 

  • 2.

    Wu, P. et al. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1, 23–43 (2019).

    Google Scholar 

  • 3.

    Schmidt, M. W. & Noack, A. G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000).

    Google Scholar 

  • 4.

    Azzi, E. S., Karltun, E. & Sundberg, C. Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environ. Sci. Technol. 53, 8466–8476 (2019).

    Google Scholar 

  • 5.

    Yang, Q. et al. Greenhouse gas emission analysis of biomass moving-bed pyrolytic polygeneration systems based on Aspen Plus and hybrid LCA in China. Energy Procedia 158, 3690–3695 (2019).

    Google Scholar 

  • 6.

    Matuštík, J., Hnátková, T. & Kočí, V. Life cycle assessment of biochar-to-soil systems: a review. J. Cleaner Prod. 259, 120998 (2020).

    Google Scholar 

  • 7.

    Roberts, K., Gloy, B., Joseph, S., Scott, N. & Lehmann, J. Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ. Sci. Technol. 44, 827–833 (2010).

    Google Scholar 

  • 8.

    Papageorgiou, A., Azzi, E. S., Enell, A. & Sundberg, C. Biochar produced from wood waste for soil remediation in Sweden: carbon sequestration and other environmental impacts. Sci. Total Environ. 776, 145953 (2021).

    Google Scholar 

  • 9.

    Phillips, C. L. et al. Can biochar conserve water in Oregon agricultural soils? Soil Till. Res. 198, 104525 (2020).

    Google Scholar 

  • 10.

    Qian, L. et al. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manage. 5, 145–154 (2014).

    Google Scholar 

  • 11.

    Meyer, S., Bright, R. M., Fischer, D., Schulz, H. & Glaser, B. Albedo impact on the suitability of biochar systems to mitigate global warming. Environ. Sci. Technol. 46, 12726–12734 (2012).

    Google Scholar 

  • 12.

    Tisserant, A. & Cherubini, F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 8, 179 (2019).

    Google Scholar 

  • 13.

    Whitman, T., Hanley, K., Enders, A. & Lehmann, J. Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management. Org. Geochem. 64, 76–83 (2013).

    Google Scholar 

  • 14.

    Lefebvre, D. et al. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Sci. Rep. 10, 19479 (2020).

    Google Scholar 

  • 15.

    Zhao, N., Lehmann, J. & You, F. Poultry waste valorization via pyrolysis technologies: economic and environmental life cycle optimization for sustainable bioenergy systems. ACS Sustain. Chem. Eng. 8, 4633–4646 (2020).

    Google Scholar 

  • 16.

    Woolf, D. et al. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    Google Scholar 

  • 17.

    Werner, C. et al. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environ. Res. Lett. 13, 044036 (2018).

    Google Scholar 

  • 18.

    Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).

    Google Scholar 

  • 19.

    AMS.III-L.: Avoidance of Methane Production from Biomass Decay Through Controlled Pyrolysis (United Nations Framework Convention on Climate Change, 2007); https://cdm.unfccc.int/methodologies/DB/72XV0Z89701S2D87UBPFD57WE5AFP5

  • 20.

    Kanaly, R. A. & Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182, 2059–2067 (2000).

    Google Scholar 

  • 21.

    Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010).

    Google Scholar 

  • 22.

    Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778 (2012).

    Google Scholar 

  • 23.

    McBeath, A. V., Wurster, C. M. & Bird, M. I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass Bioenergy 73, 155–173 (2015).

    Google Scholar 

  • 24.

    Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).

    Google Scholar 

  • 25.

    Spokas, K. A. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage. 1, 289–303 (2010).

    Google Scholar 

  • 26.

    Lehmann, J. et al. in Biochar for Environmental Management: Science, Technology and Implementation (eds Lehmann, J. & Joseph, S.) 235–282 (Taylor and Francis, 2015)

  • 27.

    Leng, L., Huang, H., Li, H., Li, J. & Zhou, W. Biochar stability assessment methods: a review. Sci. Total Environ. 647, 210–222 (2019).

    Google Scholar 

  • 28.

    Peters, J. F., Iribarren, D. & Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49, 5195–5202 (2015).

    Google Scholar 

  • 29.

    Hammond, J., Shackley, S., Sohi, S. & Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 39, 2646–2655 (2011).

    Google Scholar 

  • 30.

    Abney, R. B. & Berhe, A. A. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil. Front. Earth Sci. 6, 26 (2018).

    Google Scholar 

  • 31.

    Masiello, C. A. & Berhe, A. A. First interactions with the hydrologic cycle determine pyrogenic carbon’s fate in the Earth system. Earth Surf. Process. Landf. 45, 2394–2398 (2020).

    Google Scholar 

  • 32.

    Sun, T. et al. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon. Nat. Commun. 12, 4119 (2021).

    Google Scholar 

  • 33.

    Nguyen, B. T., Trinh, N. N. & Bach, Q. V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Appl. Soil Ecol. 152, 103531 (2020).

    Google Scholar 

  • 34.

    Jeffery, S., Verheijen, F. G. A., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).

    Google Scholar 

  • 35.

    Song, X. et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosyst. Health Sustain. 2, e01202 (2016).

    Google Scholar 

  • 36.

    Cong, W., Meng, J. & Ying, S. C. Impact of soil properties on the soil methane flux response to biochar addition: a meta-analysis. Environ. Sci. Process. Impacts 20, 1202–1209 (2018).

    Google Scholar 

  • 37.

    Pascual, M. B. et al. Linking biochars properties to their capacity to modify aerobic CH4 oxidation in an upland agricultural soil. Geoderma 363, 114179 (2020).

    Google Scholar 

  • 38.

    Karhu, K., Mattila, T., Bergström, I. & Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric. Ecosyst. Environ. 140, 309–313 (2011).

    Google Scholar 

  • 39.

    Borchard, N. et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci. Total Environ. 651, 2354–2364 (2019).

    Google Scholar 

  • 40.

    Klüpfel, L., Keiluweit, M., Kleber, M. & Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 48, 5601–5611 (2014).

    Google Scholar 

  • 41.

    Sun, T. et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 8, 14873 (2017).

    Google Scholar 

  • 42.

    Fungo, B. et al. Ammonia and nitrous oxide emissions from a field Ultisol amended with tithonia green manure, urea, and biochar. Biol. Fertil. Soils 55, 135–148 (2019).

    Google Scholar 

  • 43.

    Nelissen, V., Saha, B. K., Ruysschaert, G. & Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 70, 244–255 (2014).

    Google Scholar 

  • 44.

    Ding, F. et al. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. J. Soils Sediments 18, 1507–1517 (2018).

    Google Scholar 

  • 45.

    Weng, Z. H. et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change 7, 371–376 (2017).

    Google Scholar 

  • 46.

    Blanco-Canqui, H., Laird, D. A., Heaton, E. A., Rathke, S. & Acharya, B. S. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming. Glob. Change Biol. Bioenergy 12, 240–251 (2019).

    Google Scholar 

  • 47.

    Liang, B. et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 41, 206–213 (2010).

    Google Scholar 

  • 48.

    Borchard, N. et al. Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232–234, 236–242 (2014).

    Google Scholar 

  • 49.

    Kerré, B., Bravo, C. T., Leifeld, J., Cornelissen, G. & Smolders, E. Historical soil amendment with charcoal increases sequestration of non-charcoal carbon: a comparison among methods of black carbon quantification. Eur. J. Soil Sci. 67, 324–331 (2016).

    Google Scholar 

  • 50.

    Hernandez-Soriano, M. C. et al. Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. Glob. Change Biol. Bioenergy 8, 371–381 (2016).

    Google Scholar 

  • 51.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Google Scholar 

  • 52.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    Google Scholar 

  • 53.

    Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).

    Google Scholar 

  • 54.

    Whitman, T. & Lehmann, J. A dual-isotope approach to allow conclusive partitioning between three sources. Nat. Commun. 6, 8708 (2015).

    Google Scholar 

  • 55.

    Luo, Y. et al. Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol. Biochem. 106, 28–35 (2017).

    Google Scholar 

  • 56.

    Shi, Q. et al. Soil organic and inorganic carbon sequestration by consecutive biochar application: results from a decade field experiment. Soil Use Manage. 37, 95–103 (2020).

    Google Scholar 

  • 57.

    Dumortier, J. et al. Global land-use and carbon emission implications from biochar application to cropland in the United States. J. Clean. Prod. 258, 120684 (2020).

    Google Scholar 

  • 58.

    Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    Google Scholar 

  • 59.

    Jeffery, S. et al. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12, 053001 (2017).

    Google Scholar 

  • 60.

    Dai, Y., Zheng, H., Jiang, Z. & Xing, B. Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Sci. Total Environ. 713, 136635 (2020).

    Google Scholar 

  • 61.

    Ye, L. et al. Biochar effects on crop yields with and without fertilizer: a meta‐analysis of field studies using separate controls. Soil Use Manage. 36, 2–18 (2020).

    Google Scholar 

  • 62.

    Schmidt, H. P., Pandit, B. H., Cornelissen, G. & Kammann, C. I. Biochar‐based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land Degrad. Dev. 28, 2324–2342 (2017).

    Google Scholar 

  • 63.

    Amelung, W. et al. Towards implementing a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    Google Scholar 

  • 64.

    Garcia-Ibañez, P., Sanchez-Garcia, M., Sánchez-Monedero, M. A., Cayuela, M. L. & Moreno, D. A. Olive tree pruning derived biochar increases glucosinolate concentrations in broccoli. Sci. Hortic. 267, 109329 (2020).

    Google Scholar 

  • 65.

    Rubin, R. L., Anderson, T. R. & Ballantine, K. A. Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils. Wetlands 40, 1981–1991 (2020).

    Google Scholar 

  • 66.

    Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11, 115–137 (2020).

    Google Scholar 

  • 67.

    Zhang, Y. et al. Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Environ. Sci. Technol. 44, 538–544 (2010).

    Google Scholar 

  • 68.

    Crombie, K., Mašek, O., Cross, A. & Sohi, S. Biochar—synergies and trade‐offs between soil enhancing properties and C sequestration potential. Glob. Change Biol. Bioenergy 7, 1161–1175 (2015).

    Google Scholar 

  • 69.

    Li, L., You, S. & Wang, X. Optimal design of standalone hybrid renewable energy systems with biochar production in remote rural areas: a case study. Energy Proc. 158, 688–693 (2019).

    Google Scholar 

  • 70.

    Smebye, A. B., Sparrevik, M., Schmidt, H. P. & Cornelissen, G. Life-cycle assessment of biochar production systems in tropical rural areas: comparing flame curtain kilns to other production methods. Biomass Bioenergy 101, 35–43 (2017).

    Google Scholar 

  • 71.

    Jeffery, S. et al. The way forward in biochar research: targeting trade-offs between the potential wins. Glob. Change Biol. Bioenergy 7, 1–13 (2015).

    Google Scholar 

  • 72.

    Ogle, S. M. et al. in Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Calvo Buendia, E., et al.) Ch. 2, Appendix 4 (IPCC, 2019).

  • 73.

    Microsoft Carbon Removal: Lessons from an Early Corporate Purchase (Microsoft, 2021); https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4MDlc

  • 74.

    Donofrio, S. et al. The Only Constant is Change: State of the Voluntary Carbon Markets 2020 (Forest Trends Association, 2020).

  • 75.

    Dutta, B. & Raghavan, V. A life cycle assessment of environmental and economic balance of biochar systems in Quebec. Int. J. Energy Environ. Eng. 5, 106 (2014).

    Google Scholar 

  • 76.

    Cheng, F., Luo, H. & Colosi, L. M. Slow pyrolysis as a platform for negative emissions technology: an integration of machine learning models, life cycle assessment, and economic analysis. Energy Convers. Manage. 223, 113258 (2020).

    Google Scholar 

  • 77.

    Frank, J. R., Brown, T. R., Malmsheimer, R. W., Volk, T. A. & Ha, H. The financial trade‐off between the production of biochar and biofuel via pyrolysis under uncertainty. Biofuel Bioprod. Bioref. 14, 594–604 (2020).

    Google Scholar 

  • 78.

    Woolf, D., Lehmann, J., Fisher, E. & Angenent, L. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environ. Sci. Technol. 48, 6492–6499 (2014).

    Google Scholar 

  • 79.

    Woolf, D., Lehmann, J. & Lee, D. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. 7, 13160 (2016).

    Google Scholar 

  • 80.

    Owsianiak, M. et al. Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Sci. Total Environ. 755, 142455 (2020).

    Google Scholar 

  • 81.

    Certification of the Carbon Sink Potential of Biochar Version 2.1E (EBC, accessed 20 March 2012); https://www.european-biochar.org/media/doc/26/c_en_sink-value_2-1.pdf

  • 82.

    Buss, W., Bogush, A., Ignatyev, K. & Masek, O. Unlocking the fertilizer potential of waste-derived biochar. ACS Sustain. Chem. Eng. 8, 12295–12303 (2020).

    Google Scholar 

  • 83.

    Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).

    Google Scholar 

  • 84.

    Buss, W., Yeates, K., Rohling, E. & Borevitz, J. Enhancing natural cycles in agro-ecosystems to boost plant carbon capture and soil storage. Oxford Open Clim. Change 1, kgab006 (2021).

    Google Scholar 

  • 85.

    Man, K. Y., Chow, K. L., Man, Y. B., Mo, W. Y. & Wong, M. H. Use of biochar as feed supplements for animal farming. Crit. Rev. Environ. Sci. Technol. 51, 187–217 (2021).

    Google Scholar 

  • 86.

    Zhou, X. et al. Life cycle assessment of biochar modified bioasphalt derived from biomass. ACS Sustain. Chem. Eng. 8, 14568–14575 (2020).

    Google Scholar 

  • 87.

    Li, Y., Xing, B., Ding, Y., Han, X. & Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Biores. Technol. 312, 123614 (2020).

    Google Scholar 

  • 88.

    Sciarria, T. P. et al. Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J. Power Source 462, 228183 (2020).

    Google Scholar 

  • 89.

    Woolf, D. & Lehmann, J. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111, 83–95 (2012).

    Google Scholar 

  • 90.

    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Biores. Technol. 114, 644–653 (2012).

    Google Scholar 

  • 91.

    World Energy Outlook 2018 (International Energy Agency, 2018).

  • 92.

    Slavich, P. G. et al. Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366, 213–227 (2013).

    Google Scholar 

  • 93.

    Singh, B. P. et al. In situ persistence and migration of biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures. PLoS ONE 10, e0141560 (2015).

    Google Scholar 

  • 94.

    Fang, Y. et al. Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter. Eur. J. Soil Sci. 70, 960–974 (2019).

    Google Scholar 

  • 95.

    Budai, A., Rasse, D. P., Lagomarsino, A., Lerch, T. Z. & Paruch, L. Biochar persistence, priming and microbial responses to pyrolysis temperature series. Biol. Fertil. Soils 52, 749–761 (2016).

    Google Scholar 

  • 96.

    Liu, B. et al. A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils. Sci. Total Environ. 718, 137390 (2020).

    Google Scholar 

  • 97.

    Lal, P. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).

    Google Scholar 

  • 98.

    Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–209 (2006).

    Google Scholar 

Source

Leave a Reply

  • Sign Up
Or Login Using
Lost your password? Please enter your username or email address. You will receive a link to create a new password via email.